Higher order Toda brackets

نویسندگان

چکیده

We describe two ways to define higher order Toda brackets in a pointed simplicial model category $${\mathcal {D}}$$ : one is recursive definition using categorical constructions, and the second uses associated enrichment. show that these definitions agree, by providing third, diagrammatic, description of bracket, explain how it serves as obstruction rectifying certain homotopy-commutative diagram .

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivalences of Higher Derived Brackets

This note elaborates on Th. Voronov’s construction [V1, V2] of L∞-structures via higher derived brackets with a Maurer–Cartan element. It is shown that gauge equivalent Maurer–Cartan elements induce L∞-isomorphic structures. Applications in symplectic, Poisson and Dirac geometry are discussed.

متن کامل

Higher Toda Mechanics and Spectral Curves

For each one of the Lie algebras gln and g̃ln, we constructed a family of integrable generalizations of the Toda chains characterized by two integers m+ and m−. The Lax matrices and the equations of motion are given explicitly, and the integrals of motion can be calculated in terms of the trace of powers of the Lax matrix L. For the case of m+ = m−, we find a symmetric reduction for each general...

متن کامل

Higher Poisson Brackets and Differential Forms

We show how the relation between Poisson brackets and symplectic forms can be extended to the case of inhomogeneous multivector fields and inhomogeneous differential forms (or pseudodifferential forms). In particular we arrive at a notion which is a generalization of a symplectic structure and gives rise to higher Poisson brackets. We also obtain a construction of Koszul type brackets in this s...

متن کامل

Higher Derived Brackets and Deformation Theory

The existing constructions of derived Lie and sh-Lie brackets involve multilinear maps that are used to define higher order differential operators. In this paper, we prove the equivalence of three different definitions of higher order operators. We then introduce a unifying theme for building derived brackets and show that two prevalent derived Lie bracket constructions are equivalent. Two basi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Homotopy and Related Structures

سال: 2021

ISSN: ['2193-8407']

DOI: https://doi.org/10.1007/s40062-021-00285-5